Methodological Approach for Messages Classification on Twitter Within E-Government Area

dc.contributor.authorStoica, Eduard Alexandru
dc.contributor.authorOzyirmidokuz, Esra Kahya
dc.contributor.authorUyar, Kumru
dc.contributor.authorPitic, Antoniu Gabriel
dc.date.accessioned2025-02-24T16:34:14Z
dc.date.available2025-02-24T16:34:14Z
dc.date.issued2018
dc.departmentNuh Naci Yazgan
dc.description25th International Economic Conference of Sibiu -- IECS 2018 -- 11 May 2018 through 12 May 2018 -- Sibiu -- 273659
dc.description.abstractThe constant growth in the numbers of Social Media users is a reality of the past few years. Companies, governments and researchers focus on extracting useful data from Social Media. One of the most important things we can extract from the messages transmitted from one user to another is the sentiment—positive, negative or neutral—regarding the subject of the conversation. There are many studies on how to classify these messages, but all of them need a huge amount of data already classified for training, data not available for Romanian language texts. We present a case study in which we use a Naïve Bayes classifier trained on an English short text corpus on several thousand Romanian texts. We use Google Translate to adapt the Romanian texts and we validate the results by manually classifying some of them. © 2018, Springer Nature Switzerland AG.
dc.description.sponsorshipTUBITAK 1003 Project, (116E676)
dc.identifier.doi10.1007/978-3-030-01878-8_30
dc.identifier.endpage361
dc.identifier.isbn978-303001877-1
dc.identifier.issn2198-7246
dc.identifier.scopus2-s2.0-85126260806
dc.identifier.scopusqualityQ4
dc.identifier.startpage355
dc.identifier.urihttps://doi.org/10.1007/978-3-030-01878-8_30
dc.identifier.urihttps://hdl.handle.net/20.500.14440/556
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media B.V.
dc.relation.ispartofSpringer Proceedings in Business and Economics
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250201
dc.subjectNaïve Bayes classifier
dc.subjectSocial media
dc.subjectText classification
dc.titleMethodological Approach for Messages Classification on Twitter Within E-Government Area
dc.typeConference Object

Dosyalar