Investigation of the voltage-dependent transport properties of metallic silicon nanotubes (SiNTs): A first-principles study
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Considering that the current microelectronics technology is built upon silicon, various nanoscale silicon structures are being investigated. In this study, voltage-dependent transmission characteristics of short silicon nanotubes (SiNTs) are investigated using first-principles methods. Density functional theory in conjunction with non-equilibrium Green's function formalism is utilized to simulate metallic (5,5) and (8,8) SiNTs in order to obtain their current-voltage characteristics. The variation of the SiNT resistance with the applied voltage is also given and discussed together with the change in the transmission spectra. It is shown that current-voltage characteristics of short metallic SiNTs show nonlinear behaviour due to the changes in their transmission spectra. Obtained results and characteristics have implications on nanoscale SiNT interconnect design. (C) 2014 Elsevier B.V. All rights reserved.