Exploring the attention process differentiation of attention deficit hyperactivity disorder (ADHD) symptomatic adults using artificial intelligence on electroencephalography (EEG) signals
dc.authorid | Saygili, Gorkem/0000-0002-9049-2138 | |
dc.contributor.author | Guney, Gokhan | |
dc.contributor.author | Kisacik, Esra | |
dc.contributor.author | Kalaycioglu, Canan | |
dc.contributor.author | Saygili, Gorkem | |
dc.date.accessioned | 2025-02-24T17:19:08Z | |
dc.date.available | 2025-02-24T17:19:08Z | |
dc.date.issued | 2021 | |
dc.department | Fakülteler, Fen-Edebiyat Fakültesi, Psikoloji Bölümü | |
dc.description.abstract | Attention deficit and hyperactivity disorder (ADHD) onset in childhood and its symptoms can last up till adulthood. Recently, electroencephalography (EEG) has emerged as a tool to investigate the neurophysiological connection of ADHD and the brain. In this study, we investigated the differentiation of attention process of healthy subjects with or without ADHD symptoms under visual continuous performance test (VCPT). In our experiments, artificial neural network (ANN) algorithm achieved 98.4% classification accuracy with 0.98 sensitivity when P2 event related potential (ERP) was used. Additionally, our experimental results showed that fronto-central channels were the most contributing. Overall, we conclude that the attention process of adults with or without ADHD symptoms become a key feature to separate individuals especially in fronto-central regions under VCPT condition. In addition, using P2 ERP component under VCPT task can be a highly accurate approach to investigate EEG signal differentiation on ADHD-symptomatic adults. | |
dc.identifier.doi | 10.3906/elk-2011-3 | |
dc.identifier.endpage | 2325 | |
dc.identifier.issn | 1300-0632 | |
dc.identifier.issn | 1303-6203 | |
dc.identifier.issue | 5 | |
dc.identifier.scopus | 2-s2.0-85117245977 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 2312 | |
dc.identifier.trdizinid | 524252 | |
dc.identifier.uri | https://doi.org/10.3906/elk-2011-3 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/524252 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14440/1017 | |
dc.identifier.volume | 29 | |
dc.identifier.wos | WOS:000703667100004 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | TR-Dizin | |
dc.language.iso | en | |
dc.publisher | Tubitak Scientific & Technological Research Council Turkey | |
dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_WOS_20250201 | |
dc.subject | Attention deficit hyperactivity disorder | |
dc.subject | artificial neural network | |
dc.subject | support vector machine | |
dc.subject | electroen-cephalography | |
dc.subject | visual continuous performance test | |
dc.title | Exploring the attention process differentiation of attention deficit hyperactivity disorder (ADHD) symptomatic adults using artificial intelligence on electroencephalography (EEG) signals | |
dc.type | Article |