A Data Mining Based Approach to a Firm's Marketing Channel

dc.contributor.authorOzyirmidokuz, Esra Kahya
dc.contributor.authorUyar, Kumru
dc.contributor.authorOzyirmidokuz, Mustafa Hakan
dc.date.accessioned2025-02-24T17:18:33Z
dc.date.available2025-02-24T17:18:33Z
dc.date.issued2015
dc.departmentNuh Naci Yazgan
dc.description22nd International Economic Conference of Sibiu (IECS) -- MAY 15-16 -- 2015 -- Sibiu -- ROMANIA
dc.description.abstractFirms need to collect and analyze marketing data in order to have a competitive advantage in the sector. The aim of this research is to extract knowledge from an international firm's marketing channel to improve the efficiency of the marketing system. The Cross Industry Standard Process for Data Mining (CRISP-DM) is used to analyze the survey data. Data are clustered by applying a Kohonen Self Organizing Map (SOM) to reduce the attributes. Anomaly detection analysis is applied. We generate a C5.0 Decision Tree (DT) model used for predicting the marketing channel firms' complaints with very high accuracy. Decision rules are also extracted. (C) 2015 The Authors. Published by Elsevier B.V.
dc.description.sponsorshipLucian Blaga Univ Sibiu, Fac Econ Sci,Assoc Excellence Econ,Econ Sci Fac Assoc Romania,Management Acad Soc Romania
dc.identifier.doi10.1016/S2212-5671(15)00975-2
dc.identifier.endpage84
dc.identifier.issn2212-5671
dc.identifier.startpage77
dc.identifier.urihttps://doi.org/10.1016/S2212-5671(15)00975-2
dc.identifier.urihttps://hdl.handle.net/20.500.14440/740
dc.identifier.volume27
dc.identifier.wosWOS:000381115300011
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartof22nd International Economic Conference of Sibiu 2015, Iecs 2015 Economic Prospects in the Context of Growing Global and Regional Interdependencies
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20250201
dc.subjectKnowledge discovery in databases
dc.subjectdata mining
dc.subjectDT, rule induction, marketing channel complaints
dc.titleA Data Mining Based Approach to a Firm's Marketing Channel
dc.typeConference Object

Dosyalar